Himastatin is a bacterial natural product that has been studied over the past several decades for its antibiotic properties and intriguing structure. The compound is a dimer of peptide macrocycles linked through a bond between the aryl rings of two cyclotryptophan residues. While himastatin’s mechanism of action is not known, an early investigation demonstrated that its antibiotic activity was reduced in the presence of sodium salts of phospholipids and fatty acids, leading to speculation that himastatin may target the bacterial membrane. The most striking structural feature of himastatin is the central C5–C5' linkage between cyclotryptophan residues that is formed in the final biosynthetic step and is critical for the observed Gram-positive antibiotic activity.